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Abstract001

Human expertise in chemistry and biomedicine002
relies on contextual molecular understanding, a003
capability that large language models (LLMs)004
can extend through fine-grained alignment be-005
tween molecular structures and text. Recent006
multimodal learning advances focus on cross-007
modal alignment, but existing molecule-text008
models ignore complementary information in009
different molecular views and rely on single-010
view representations, limiting molecular under-011
standing. Moreover, naïve multi-view align-012
ment strategies face two challenges: (1) sepa-013
rate aligned spaces with inconsistent mappings014
between molecule and text embeddings, and015
that (2) existing loss objectives fail to preserve016
complementary information for fine-grained017
alignment. This can limit the LLM’s ability to018
fully understand the molecular properties. To019
address these issues, we propose MV-CLAM,020
a novel framework that aligns multi-view021
molecular representations into a unified textual022
space using a multi-query transformer (MQ-023
Former). Our approach ensures cross-view con-024
sistency while a token-level contrastive loss025
preserves diverse molecular features across026
textual queries. MV-CLAM enhances molec-027
ular reasoning, improving retrieval and cap-028
tioning accuracy. The source code of MV-029
CLAM is available in https://anonymous.030
4open.science/r/mv-clam-4827.031

1 Introduction032

A profound contextual understanding of both033

molecular structures and biomedical text is cru-034

cial in chemistry and biomedicine. For large lan-035

guage models to capture these relationships, fine-036

grained alignment between textual and molecular037

representations is required to harness their high-038

context reasoning ability. In vision-language mod-039

els, researchers have moved beyond coarse image-040

text matching toward precise region-word align-041

ment, ensuring detailed semantic correspondence042
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Figure 1: Motivations of MV-CLAM. (A) Complemen-
tary molecular information captured by 2D and 3D rep-
resentations, where 2D graph encodes edge connectivity,
and 3D conformers captures spatial coordinate struc-
tures. (B) Inconsistent mappings between molecule (2D
and 3D) and property tokens (e.g., 2D property token
like solubility and 3D structural information like chiral
3-C) in distinct text spaces. (C) A unified alignment
with a Multi-Querying Transformer (MQ-Former) al-
lows all text tokens share a single text space.

between textual descriptions and visual features (Li 043

et al., 2022; Lavoie et al., 2024). Recent studies 044

have leveraged large language models (LLMs) for 045

molecular understanding by integrating sequential 046

representations (1D SMILES strings) and struc- 047

tural features (2D molecular graphs and 3D con- 048

formers) (Edwards et al., 2022; Liu et al., 2023a). 049

This approach mitigates the inherent limitations 050

of LLMs which are primarily trained on textual 051

data, that lacks native reasoning over molecular 052

structures. To enable LLMs to further understand 053

molecule information, Q-former based models (Liu 054

et al., 2023b; Li et al., 2024) align molecular struc- 055

tures into text space (Figure 2B). 056

Combining multi-view molecular features simul- 057

taneously is essential, as their complementary na- 058

ture provides a more complete understanding of 059
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Figure 2: Methods for molecular language modeling. (A) Contrastive learning aligns two modalities via a contrastive
objective, excelling in retrieval but lacking generative capabilities. (B) The Q-Former framework uses learnable
query tokens for caption generation but is limited to a single molecular representation. (C) MV-CLAM extends this
by integrating multiple representations with modality-specific queries, enabling fine-grained knowledge integration.

molecular characteristics. For example, as shown060

in Figure 1A, 2D molecular graphs primarily cap-061

ture atomic bonding patterns, absent in 3D point062

clouds. Hence, 2D graphs focus on properties063

highly affected by atomic bond patterns (eg.,log064

P, solubility) (Guo et al., 2022) while 3D molecular065

conformations encode spatial atomic coordinates066

that influence molecular interactions and quantum067

properties such as HOMO and LUMO (Kim et al.,068

2024; Zhou et al., 2023; Du et al., 2023). In069

the context of molecule understanding, aligning070

both molecular views into the unified text space071

of LLMs enables the model to capture all relevant072

molecular details effectively.073

However, existing molecule-text modeling fo-074

cuses on the alignment of a single molecular view075

as shown in Figure 2A and 2B (Cao et al., 2023; Li076

et al., 2024; Liu et al., 2023b,a). Naïve approaches077

to multi-view alignment might be to independently078

map each molecular view to text using separate079

alignment modules. However, this leads to several080

issues. (1) Separated aligned spaces. Aligning081

2D and 3D molecular representations separately082

to text results in distinct aligned spaces for the083

same molecule. As shown in Figure 1B, “solubil-084

ity” and “chiral 3-C” correspond to 2D and 3D085

molecular properties, but each has redundant em-086

beddings in its own space. This inconsistency can087

prevent the LLM from fully understanding molecu-088

lar properties, as it lacks a unified representation of089

2D and 3D structures. (2) Insufficient fine-grained090

molecule-text alignment. Existing Q-Former-based091

approaches (Li et al., 2024; Liu et al., 2023b) for092

aligning molecule queries into a unified text space093

select the most similar query-to-single token pairs094

for contrastive learning (Figure 4). This coarse095

alignment overlooks structural diversities across096

molecular views (Appendix Figure 6B), failing to 097

preserve complementary information necessary for 098

fine-grained alignment and limiting the LLM’s abil- 099

ity to fully understand molecular properties. 100

To address this, we propose MV-CLAM, a novel 101

framework that aligns multi-view molecule fea- 102

tures using a multi-query transformer, MQ-Former 103

(Figure 2C). Specifically, our approach jointly inte- 104

grates multi-view molecular representations into a 105

unified textual space, where “solubility" and “chi- 106

ral 3-C" have unique unified embedding. Such 107

helps generate universal query tokens with more 108

semantic information. Additionally, we propose 109

a multi-token contrastive loss to refine alignment 110

by considering all text tokens within the descrip- 111

tion, rather than a single CLS token. Such multi- 112

token contrasting ensures that molecular structures 113

are contextualized with finer, token-level associa- 114

tions, capturing both atomic and functional rele- 115

vance. MV-CLAM enhances molecular reasoning 116

in LLMs, improving both retrieval and captioning 117

accuracy. 118

Our main contributions are as follows: 119

• We propose a novel framework, MV-CLAM, 120

that simultaneously aligns multiple molecular 121

views (1D smiles, 2D graphs, and 3D con- 122

formers) to a unified textual space to enhance 123

LLM-based molecular reasoning. 124

• We present a novel contrastive learning loss in 125

molecule-language modeling for fine-grained 126

alignment, considering all text tokens with 127

enriched molecular query tokens. 128

• We achieve state-of-the-art performance in 129

molecule-text retrieval and molecule caption- 130

ing tasks while improving the interpretability 131

of molecular representations. 132
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2 MV-CLAM133

MV-CLAM provides molecule captions given134

multi-view structural information. 2D and 3D135

molecular structural information is extracted from136

specialized encoders and processed through MQ-137

Former’s cross-attention layers to update learnable138

query tokens for each dimension. The shared self-139

attention layer enables information sharing across140

all modalities. 2D and 3D queries are combined141

to create a universal query, which is trained with142

our modified multi-objective loss for fine-grained143

alignment with textual descriptions. The learned144

universal query is then passed with the prompt and145

SMILES strings to the language model for cap-146

tion generation. The overall framework of MV-147

CLAM shown in Figure 2C is comprised of three148

main components: (1) Molecule structural graph149

encoders for 2D and 3D molecular structures, (2)150

MQ-Former as a cross-modal projector, and (3)151

LLaMA2 as the language model.152

2.1 Molecular Graph Encoder153

To capture structural information from multiple154

views, we used molecular embeddings from both155

3D and 2D structural encoders. For the 3D encoder156

f3d, we deployed Uni-Mol (Zhou et al., 2023), a157

SE(3)-transformer based model pretrained on 209158

million 3D molecular conformations using two159

tasks: 3D position recovery and masked atom pre-160

diction. Input 3D molecule for Uni-Mol is denoted161

as m3d = (V, f,P), where V and f each represents162

atomic nodes and their features, and P ∈ R|V|×3163

represents 3D coordinates of atoms. Pair represen-164

tations are initialized by invariant spatial positional165

encoding from atom coordinates and interact with166

atom representations. The output atomic represen-167

tation H3d ∈ R|V|×d3d , where hi corresponds to168

the i-th atom and d3d denotes hidden dimension169

size of H3d, updates learnable 3D query tokens170

through the cross-attention layers in MQ-Former’s171

3D molecular transformer block.172

H3d = [h1, h2, ..., h|V|] = f3d(m3d) (1)173

For the 2D molecular encoder f2d, we174

adopted Molecule Attention Transformer175

(MAT) (Maziarka et al., 2020), pretrained on176

two million molecule samples from ZINC15177

dataset (Irwin et al., 2012). Given 2D molecule178

m2d = (V, f,A) where A represents edges within179

the molecule as adjacency matrix, MAT generates180

atomic representations H2d ∈ R|V|×d2d using a181

specialized molecule-specific attention mechanism 182

that considers edges, atomic distances and atomic 183

features. The atomic representations interact with 184

the learnable 2D query tokens via cross-attention 185

layers in 2D molecular transformer block. 186

H2d = [h1, h2, ..., h|V|] = f2d(m2d) (2) 187

2.2 MQ-Former: Multi-Querying 188

Transformer 189

Previous studies applying Q-Former to the molecu- 190

lar domain projects single-dimensional structural 191

embeddings into the textual space (Li et al., 2024; 192

Zhang et al., 2024). These models consist of a sin- 193

gle molecule transformer and a text transformer. 194

However, this approach is inherently limited in pre- 195

serving molecular information when aligning with 196

text embeddings for two main reasons: (1) sep- 197

arate aligned spaces with inconsistent mappings 198

between molecule and text embeddings, and (2) 199

information loss caused by single-token contrastive 200

learning. MQ-Former addresses this limitation by 201

introducing a novel architecture capable of aligning 202

multiple modalities to a unified aligned space using 203

a refined multi-objective loss for better information 204

preservation (Figure 3). 205

Our approach combines structural representa- 206

tions of two dimensions, but the architecture can 207

be extended using multiple molecule transform- 208

ers and a single text transformer. Each molecule 209

transformer, based on the BERT architecture with 210

additional cross-attention layer, processes K learn- 211

able query tokens specific to their respective views. 212

Following previous studies (Li et al., 2024; Liu 213

et al., 2023b), we adopt the SciBERT (Beltagy 214

et al., 2019) architecture for the text transformer 215

and initialize all blocks with SciBERT’s pretrained 216

weights. Hence, textual descriptions S of length 217

L are tokenized with SciBERT’s tokenizer fsci to 218

Xtext = {x1, x2, ..., xT } (T: number of tokens in 219

text) before being processed through MQ-Former’s 220

text transformer. The cross-attention mechanism 221

extracts relevant information from embeddings into 222

the query tokens, and shared self-attention lay- 223

ers enable information exchange across all em- 224

beddings, over-passing the limitation of separated 225

aligned spaces. 226

Figure 3 illustrates MQ-Former generating a uni- 227

versal query tokens for a molecule given two differ- 228

ent views. Two molecule transformer modules each 229

updates distinct K query tokens Q2d ∈ RK×768 230

and Q3d ∈ RK×768, which are randomly initial- 231

ized. The learned query tokens, Q̂2d and Q̂3d of 232
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Figure 3: Training scheme of MQ-Former. The proposed MQ-Former enhances molecular language modeling
by incorporating multi-token contrasting and amplified molecule captioning losses to the prior multi-objective
loss (Li et al., 2023, 2024; Liu et al., 2023b). (1) The novel multi-token contrasting loss ℓMTC replaces conventional
molecule-text contrastive learning, encouraging diverse query-token alignment. (2) The molecule captioning loss
ℓMCap is amplified to improve text generation quality. The molecule-text matching loss ℓMTM remains unchanged.

same size, are updated representations of these ini-233

tial tokens, refined through the alignment of multi-234

ple molecule views and textual descriptions Xtext ∈235

RL×768. Updated query tokens are concatenated236

to create a single universal query Q̂ ∈ R2K×768,237

containing complementary structural information238

aligned to textual space. The resulting universal239

query tokens are then used as inputs for the lan-240

guage model, along with 1D SMILES string and241

task prompt as depicted in Figure 2C.242

Q̂ = fconcat(Q̂2d, Q̂3d)

= fMQformer(H2d, H3d, Xtext, Q2d, Q3d)
(3)243

2.3 LLaMA2 & LoRA244

The pretraining corpus of LLaMA2 (Touvron et al.,245

2023) includes a vast amount of biomedical liter-246

ature and thereby exerts powerful text generation247

capability with internal chemistry knowledge. This248

allows LLaMA2 to effectively interpret 1D molecu-249

lar sequences and address tasks related to molecular250

comprehension. Despite its inherent capabilities,251

the language model necessitates fine-tuning to ef-252

fectively address the universal queries posed by253

MQ-Former, particularly due to the modifications254

in the tokenizer resulting from changes in mod-255

ule processing of textual descriptions. To facili-256

tate efficient fine-tuning, we implemented low-rank257

adaptation (LoRA, (Hu et al., 2021)).258

3 Training MV-CLAM 259

The training of MV-CLAM consists of two stages. 260

(1) Guiding MQ-Former to align both multi-view 261

molecular representations to a consistent textual 262

space, and (2) Refining query tokens to be effec- 263

tively soft-prompted by LLaMA2. Molecular en- 264

coders are frozen during the entire pipeline. 265

3.1 Stage 1: Training MQ-Former 266

Two sets of K learnable query tokens are updated 267

by each molecule transformer block in Stage 1. 268

Molecule transformer blocks hold self-attention, 269

cross-attention and feed-forward layers. Specif- 270

ically, the self attention layers in all blocks of 271

MQ-Former are shared to exchange information 272

between modalities and view. The 2D and 3D 273

query tokens Q2d(i), Q3d(i) for i-th molecule are 274

processed through their respective molecule trans- 275

formers. Our 2K universal query token Q̂(i) is 276

formed by concatenating the learned query sets. 277

The objective is to train MQ-Former to learn a uni- 278

fied latent space for all molecular embeddings and 279

obtain highly informed molecular soft-prompt Q̂(i) 280

without any inconsistencies. 281

For training, we introduce the following key 282

modifications to the multi-objective loss in pre- 283

vious works inspired by the BLIP-2 framework (Li 284

et al., 2023, 2024), designed to maximize the diver- 285

sity of queries. In order to preserve complementary 286

chemical aspects embedded in each dimension, we 287

introduce the following key modifications: (1) a 288
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(B) We propose a new approach to compute token-level
similarity between molecule queries and all text tokens,
which preserves molecule query diverse information.

novel multi-token contrasting loss ℓMTC in replace-289

ment to single-token (molecule-text) contrasting,290

and (2) amplification of the molecule captioning291

loss ℓMCap. Molecule-text matching is used with-292

out further modifications ℓMTM . This allows our293

model to capture and preserve both fine-grained294

atomic interactions and high-level chemical seman-295

tics, enhancing interpretability and expressiveness296

in molecular language modeling. Overall, the total297

loss for training MQ-Former ℓMQ in Stage 1 is as298

follows:299

ℓMQ = ℓMTC + ℓMTM + α ∗ ℓMCap (4)300

Multi-Token Contrasting. Unlike the previ-301

ous approach that retrieved only the maximum302

similarity between a query token and CLS text to-303

ken(Figure 4A), we introduce a refined similarity304

computation where each molecule token is matched305

against all text tokens, retrieving the maximum306

similarity for each token against all T text tokens307

(Figure 4B). The average loss over all k tokens308

represents a fine-grained similarity calculation be-309

tween molecule-text pairs, preventing query col-310

lapse, where a single query token with high simi-311

larity dominates the training process by aligning312

only with easily capturable text concepts. By dis-313

tributing alignment across multiple queries and text314

tokens, we achieve richer molecule-text representa-315

tions, improving cross-modal association.316

ℓMTC is measured as the batch mean of the sum317

of molecule-to-text loss ℓg2t and text-to-molecule318

loss ℓt2g. For each query in the universal query to-319

ken, we calculate the maximum cosine similarity it320

has against all text tokens x(i) ∈ Xtext(i) with tem-321

perature scaling for precision. The average of the322

calculated similarity for 2K queries represents pair-323

wise similarity in a more precise manner. Similarly,324

ℓt2g aligns the text representation with its match- 325

ing molecular query while contrasting it against 326

all other queries within the batch. The similarity 327

calculation can be formulated as the following: 328

S(i, j) =
1

2K

∑
2K

max
t

cos(Q̂k(i), xt(j))

S′(i, j) =
1

T

∑
T

max
k

cos(xt(i), Q̂k(j))

(5) 329

Together ℓMTC form a bidirectional alignment 330

between molecular features and textual descrip- 331

tions in a detailed token-wise manner. ℓg2t and 332

ℓt2g is as written below, where M is the size of the 333

batch and τ is the temperature parameter. 334

ℓg2t = −
M∑
i=1

log
exp(S(i, i)/τ)∑M

j=1 exp(S(i, j)/τ)

ℓt2g = −
M∑
i=1

log
exp(S′(i, i)/τ)∑M

j=1 exp(S
′(i, j)/τ)

(6) 335

Molecule-text Matching. ℓMTM is for a binary 336

classification task to predict matching molecule- 337

text pairs. Universal query tokens are obtained 338

then processed through a linear classifier after mean 339

pooling. Let ρ(Q̂(i), Xtext(i)) denote the predicted 340

probability that universal query Q̂(i) matches its 341

corresponding text description Xtext(i). ℓMTM is 342

calculated as follows: 343

ℓMTM =
1

M

M∑
i=1

(
− log ρ(Q̂(i), Xtext(i))

+ log ρ(Q̂(i), Xtext(j)) + log ρ(Q̂(r), Xtext(i))
)
(7) 344

where Xtext(j), Q̂(r) are randomly selected nega- 345

tive samples from the batch. Overall, ℓMTM aids 346

MQ-Former to maximize the likelihood of matched 347

pairs and minimize mismatches, enhancing its abil- 348

ity to differentiate between true and false pairs. 349

Molecule Captioning. ℓMCap is designed 350

to generate accurate text descriptions based on 351

multi-view query tokens. Text is generated auto- 352

regressively, where each token is predicted sequen- 353

tially based on the corresponding molecular queries. 354

Instead of harnessing universal queries, ℓMCap 355

sums up separate losses for 2D and 3D query to- 356

kens, ensuring that each query token retains its 357

unique dimensional information for high caption- 358

ing ability. The ℓMCap is defined as follows: 359

ℓMCap = − 1

M

M∑
i=1

log p(Xtext(i)|Q̂2d(i))

− 1

M

M∑
i=1

log p(Xtext(i)|Q̂3d(i))

(8) 360
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where p(Xtext|Q̂2d) and p(Xtext|Q̂3d) represents361

the probability of generating the text descrip-362

tion based independently on 2D or 3D molecular363

queries, respectively. While the other two losses364

focus on aligning or matching molecule-text pairs,365

the ℓMCap directly impacts the ability to generate366

new text based on molecular representations, en-367

couraging further diverse feature learning in corre-368

spondence to our modified multi-token contrasting369

loss. Given its critical role, we assigned a greater370

weight α, guiding MQ-Former to generate quality371

tokens for text-generation tasks.372

3.2 Stage 2: Specializing LLaMA2 for373

Molecule Captioning374

In Stage 2, MQ-Former is further trained alongside375

LLaMA2 to generate molecular descriptions. The376

goal is to enhance MQ-Former’s ability to produce377

universal queries that are not only aligned with the378

textual space but better interpretable by LLaMA2.379

In this stage, textual descriptions are tokenized and380

decoded using LLaMA tokenizer. Universal query381

tokens, 1D SMILES are given as input with prompt.382

Autoregressive generation loss of LLaMA2 is used383

for training the framework with LoRA (Hu et al.,384

2021). Detailed LoRA setting are in Appendix A3.385

4 Experiments386

4.1 Datasets387

PubChem324K. For molecule-text alignment and388

molecule captioning, we collected 324k molecu-389

lar SMILES-text pairs from PubChem (Kim et al.,390

2021). 2D graph features were constructed us-391

ing (Maziarka et al., 2020), and 3D conformers392

were generated with ETKDG and optimized using393

the MMFF algorithm in RDKit (Landrum et al.,394

2013). We follow dataset construction as provided395

in 3D-MoLM (Li et al., 2024) which also requires396

3D molecular conformations. High-quality subset397

of 15k pairs with text longer than 19 words are398

sampled for train, valid, test datasets. Shorter pairs399

are used for pretraining. The statistics for the fi-400

nal PubChem324k dataset used in this study are401

presented in Appendix Table 4.402

4.2 Benchmark models403

Baseline models include (1) pretrained language404

models for science: Sci-BERT (Beltagy et al.,405

2019), (2) models with molecule-text contrastive406

learning: KV-PLM (Zeng et al., 2022), MoMu (Su407

et al., 2022), MoleculeSTM (Liu et al., 2023a) and408

(3) models with Q-Former modules: MolCA (Liu 409

et al., 2023b), 3D-MoLM (Li et al., 2024), Uni- 410

MoT (Zhang et al., 2024). For molecule captioning, 411

we also benchmark Llama2-7B and 2D-MoLM, 412

each as a variant of 3D-MoLM using 1D and 2D in- 413

formation along with MolT5 (Edwards et al., 2022) 414

and InstructMol (Cao et al., 2023). 415

5 Results 416

5.1 Molecule-Text Retrieval 417

We evaluate MV-CLAM for molecule-text retrieval 418

on the PubChem324k dataset. We perform two 419

rounds of evaluation on molecule-to-text and text- 420

to-molecule retrieval tasks, using Accuracy and 421

Recall@20 metrics: within batch size of 64 and 422

is across the entire test set. We report baseline 423

performances as written in literature (Li et al., 2024; 424

Zhang et al., 2024). 425

As shown in Table 1, MV-CLAM outperforms 426

baseline approaches that represent molecules as 427

1D SMILES strings, 2D graphs, or 3D conformers. 428

We attribute our superior performance to (1) our 429

use of a universal query that aligns both 2D and 430

3D molecular representations to a consistent text, 431

and (2) a modified multi-objective loss, designed to 432

maximize query diversity and prevent over-reliance 433

on dominant alignment patterns. 434

5.2 Molecule Captioning 435

Following previous studies(Li et al., 2024), we 436

use BLEU, ROUGE, METEOR metrics to eval- 437

uate molecule captioning on the PubChem324k 438

dataset. Table 2 shows MV-CLAM consistently 439

outperforms all baselines with notable performance 440

gain from our modified multi-objective loss. Pub- 441

Chem324k dataset includes molecular nomencla- 442

ture, which our model accurately generates in ad- 443

dition to information on clinical usage and chem- 444

ical properties. Appendix Table 5 highlights the 445

model’s ability to correctly identify International 446

Union of Pure and Applied Chemistry (IUPAC) 447

nomenclature and generic drug names that differ 448

significantly in language model processing. IUPAC 449

names follow systematic chemical rules, making 450

them complex and highly structured, while generic 451

drug names are more standardized and commonly 452

used in clinical contexts. Despite these differences, 453

MV-CLAM successfully identifies both types of 454

names, showcasing its ability to handle a range of 455

linguistic and chemical complexities. Moreover, 456

MV-CLAM demonstrates its capacity to generate 457
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Table 1: Molecule-Text retrieval performance in batch and test set for different models. The highest value in each
category is indicated in bold, and the second highest value is underlined. For MoleculeSTM* and MolCA*, we
report results from UniMoT (Zhang et al., 2024).

Retrieval in batch Retrieval in test set
M2T T2M M2T T2MModel

ACC R@20 ACC R@20 ACC R@20 ACC R@20
1D SMILES
Sci-BERT(Beltagy et al., 2019) 85.32 98.74 84.20 98.43 41.67 87.31 40.18 86.77
KV-PLM(Zeng et al., 2022) 86.05 98.63 85.21 98.47 42.80 88.46 41.67 87.80
2D Graph
MoMu-S(Su et al., 2022) 87.58 99.24 86.44 99.38 47.29 90.77 48.13 89.92
MoMu-K(Su et al., 2022) 88.23 99.41 87.29 99.42 48.47 91.64 49.46 90.73
MoleculeSTM* (Liu et al., 2023a) 90.50 99.60 88.60 99.50 52.70 92.90 53.20 92.50
MolCA* (Liu et al., 2023b) 92.60 99.80 91.30 99.50 67.90 94.40 68.60 93.30
2D Graph + Tokenizer
UniMoT(Zhang et al., 2024) 93.60 100.0 92.70 99.40 69.50 96.30 69.80 94.40
3D Conformer
3D-MoLM(Li et al., 2024) 93.50 100.0 92.89 99.59 69.05 95.91 70.13 94.88
2D Graph + 3D Conformer
MV-CLAM w/ SINGLE-TOKEN CONTRASTING 96.57 99.95 97.03 99.95 76.32 96.57 77.03 96.42
MV-CLAM w/ MULTI-TOKEN CONTRASTING 97.34 99.95 97.19 99.90 78.67 96.98 79.34 96.93

literature-matching captions absent in ground truth,458

as seen in the case of Rifapentine (Appendix Ta-459

ble 5), highlighting the ability to produce highly460

informed outputs.461

5.3 Effectiveness of MQ-Former462

In this section, we substantiate the effectiveness463

of incorporating multi-view chemical information464

within the MQ-Former architecture. We conduct465

both quantitative and qualitative analysis to com-466

pare our superiority to the prior single-view align-467

ment using Q-Former. Molecular encoders are iden-468

tically set for the ablation studies.469

As a quantitative analysis, we compared our ap-470

proach to prior works that independently align 2D471

embeddings or 3D embeddings with Q-Former. We472

also evaluated an alternative setup where multi-473

view molecular embeddings were pre-combined474

and aligned to text with Q-Former. We show that475

the combination of both modalities leads to a no-476

table synergistic effect, improving the model’s over-477

all performance (Table 3). Coupled with our modi-478

fied contrastive loss, the simultaneous alignment of479

both modalities using MQ-Former ensures that crit-480

ical information is utilized, leading to more robust481

and detailed description predictions. Our frame-482

work outperforms the setting where multi-view483

embeddings are pre-combined and aligned to text484

using a single Q-Former module. Overall, the re-485

sults supports the hypothesis that well-orchestrated486

multi-view fusion can surpass the limitations of487

single-view approaches to capture diverse comple-488

mentary characteristics within molecules.489

We exemplify two case studies to interpret how490

each transformer module and modality focus on 491

distinct aspects of the molecule and its correspond- 492

ing text. These qualitative studies provide insight 493

into the alignment process by analyzing how differ- 494

ent views contribute to the comprehensive under- 495

standing of molecular structures and their textual 496

descriptions. 497

Case Study 1: Visualizing Attention Maps for 498

2D and 3D Query Tokens. Embedding grounded 499

on different latent spaces and dimensions differ- 500

ently align molecular information to text. Visual- 501

ization of the distinct alignment is performed by 502

extracting and comparing the attention maps of the 503

shared self-attention layers when processing 2D 504

and 3D query tokens respectively with text tokens. 505

With multi-token contrasting loss, each query 506

token attends distinctly to individual tokens in the 507

captioning sentence, exhibiting diverse attention 508

scores (Appendix Figure 6). While query maintain- 509

ing diversity, 2D query tokens effectively capture 510

2D-related terms - such as boiling point - focusing 511

on chemical and material properties that may be 512

overlooked in 3D settings. Conversely, 3D query 513

tokens capture 3D-specific structural information, 514

such as bis (2-dimethylamino)ethyl), informed by 515

3D spatial coordinates. In contrast, when MQ- 516

Former is trained with the original contrastive loss, 517

it not only lacks diversity among query tokens but 518

also struggles to properly align with 2D- and 3D- 519

related terms. 520

Case Study 2: Comparing molecule captions 521

with 2D-Qformer and 3D-Qformer. We illus- 522

trates the difference in captioning results between 523

the uni-modal Q-Former ablation models and ours 524
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Table 2: Molecule captioning performance across models. The highest value in each category is bolded, and the
second highest is underlined. Models marked with †were pretrained on larger datasets, as noted in their original
papers. Results for InstructMol and MolCA are from UniMoT (Zhang et al., 2024), with MolCA evaluated in two
variations using OPT-125M (small) and OPT-1.3B (large) as language models.

BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
1D SMILES
MolT5-Small(Edwards et al., 2022) 22.53 15.23 30.44 13.45 20.30 23.98
MolT5-Base(Edwards et al., 2022) 24.51 16.61 32.19 14.04 21.35 26.10
MolT5-Large(Edwards et al., 2022) 25.87 17.28 34.07 16.42 23.41 28.04
Llama2-7B†(Li et al., 2024) 27.01 20.94 35.76 20.68 28.88 32.11
2D Graph
MoMu-Small(Su et al., 2022) 22.86 16.01 30.98 13.65 20.75 24.35
MoMu-Base(Su et al., 2022) 24.74 16.77 32.45 14.62 22.09 27.16
MoMu-Large(Su et al., 2022) 26.34 18.01 34.75 16.86 24.76 28.73
2D-MoLM†(Li et al., 2024) 27.15 21.19 36.02 20.76 29.12 32.28
InstructMol*(Cao et al., 2023) 18.90 11.70 27.30 11.80 17.80 21.30
MolCA-Small*(Liu et al., 2023b) 25.90 17.50 34.40 16.60 23.90 28.50
MolCA-Large*(Liu et al., 2023b) 28.60 21.30 36.20 21.40 29.70 32.60
2D Graph + Tokenizer
UniMoT(Zhang et al., 2024) 31.30 23.80 37.50 23.70 33.60 34.80
3D Conformer
3D-MoLM(Li et al., 2024) 30.32 22.52 36.84 22.32 31.23 33.06
2D Graph + 3D Conformer
MV-CLAM w/ SINGLE-TOKEN CONTRASTING 31.75 24.48 40.43 25.72 33.79 36.54
MV-CLAM w/ MULTI-TOKEN CONTRASTING 32.32 25.11 40.87 26.48 34.79 36.87

Table 3: Captioning Performance Comparison. We com-
pare the captioning performance using the original Q-
Former module for each single-view and multi-view(pre-
combined) molecular embeddings. MV-CLAM‡ de-
notes performance achieved using multi-token contrast-
ing while the other, single-token contrasting.

Model B-2 B-4 R-1 R-2 R-L M
2D only 29.72 22.26 38.22 23.45 31.61 34.22
3D only 29.45 22.03 37.86 23.11 31.83 33.79

Multi-view 29.80 22.70 39.07 24.92 33.09 35.49
MV-CLAM 31.75 24.48 40.43 25.72 33.79 36.54
MV-CLAM‡ 32.32 25.11 40.87 26.48 34.79 36.87

demonstrating the effects of utilizing multi-view525

molecular understanding in text generation (Ap-526

pendix Figure 5). The 2D and 3D uni-modal abla-527

tions struggle to fully capture complex and large528

structures like ‘(R)-3-hydroxytriacontanoyl-CoA’.529

The ablation models fail to retain sufficient struc-530

tural information required to differentiate long car-531

bon chains with their functional groups. However,532

our model captures not only carboxylic acid but533

also phosphonate groups, which are often consid-534

ered bioisosteric replacements for sulfonate acids535

in medicinal chemistry due to their structural simi-536

larity (Macchiarulo and Pellicciari, 2007). In com-537

parison, the ablation models only managed to cap-538

ture one of these groups, indicating that multi-view539

approach enables the generation of accurate nomen-540

clature and richer descriptive information.541

6 Conclusion 542

In this paper, we introduce MV-CLAM equipped 543

with MQ-Former, a novel cross-modal projector. 544

The essence of cross-modal projection lies in align- 545

ing the enriched molecular representation spaces 546

with the text space of language models. Our ar- 547

chitecture successfully retains complementary in- 548

formation from multiple dimension into a single 549

universal token easily interpreted by large language 550

models for molecule description tasks. Exten- 551

sive experiments demonstrate that MV-CLAM has 552

successfully fine-tunes large language models for 553

molecule understanding, including molecule-text 554

retrieval and molecule captioning tasks, with po- 555

tential for broader applications. 556

7 Limitations 557

For future work, we aim to extend this framework 558

to incorporate additional molecular representations, 559

including other chemical structures, proteomics, 560

and multiomics data. By aligning more views 561

within MV-CLAM’s architecture, we anticipate im- 562

proved navigation of the drug space and a deeper 563

understanding of molecular interactions across bi- 564

ological contexts. Additionally, curating larger 565

molecule-text datasets is expected to enhance the 566

model’s performance and its ability to generalize 567

to subtle molecular variations. 568
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A Appendix748

A.1 Related Works749

Molecule-Text Modeling. Early approaches uti-750

lize 1D SMILES molecular sequences to treat751

molecules as text sequences by adapting Trans-752

former models (Vaswani, 2017) designed for natu-753

ral language processing (Irwin et al., 2022; Wang754

et al., 2019). KV-PLM (Zeng et al., 2022) specif-755

ically employs a masked language modeling loss756

to pretrain on biomedical texts with 1D SMILES757

representation. MolT5 (Edwards et al., 2022) spe-758

cializes T5 model (Raffel et al., 2020) and tokenizer759

for SMILES-to-text and text-to-SMILES transla-760

tions. Further enhancements represent molecules761

as 2D graphs. In particular, MoMu (Su et al.,762

2022) and MoleculeSTM (Liu et al., 2023a) lever-763

age cross-modal contrastive learning to align the764

molecule graph representation to text. Current765

approaches to use multi-view representations of766

molecules primarily rely on contrastive learning,767

as demonstrated in models like GIT-Mol (Liu et al.,768

2024) and MolLM (Tang et al., 2024b). Addition-769

ally, aided with the development of vision large770

language models (VLLMs), molecular large lan-771

guage models with multi-modal learning architec-772

tures have been developed. Simple projection lay-773

ers were used in prior works, InstructMol (Cao774

et al., 2023) and GraphGPT (Tang et al., 2024a), to775

project molecular graph representations to LLM’s776

input text token space. Recent works have been777

concentrated on utilizing Q-Former (Li et al., 2023)778

suggested in vision domain to bridge the gap be-779

tween molecule and text modality. MolCA (Liu780

et al., 2023b) and 3D-MoLM (Li et al., 2024)781

aligns 2D graph and 3D conformer molecular782

representations to text in purpose to generate ef-783

fective soft-prompts for large language models.784

UniMoT (Zhang et al., 2024) employs a vector785

quantization-driven tokenizer with a Q-Former.786

Current methods for utilizing multi-view represen-787

tations of molecules are limited to contrastive learn-788

ing or usage of specialized tokenizers, failing to789

achieve simultaneous alignment across all views790

and text, thereby neglecting the core principle of791

cross-modal alignment.792

Molecular representation learning. Recent793

research in representation learning for molecules794

has seen significant advancements, particularly in795

leveraging large-scale unlabeled molecular data.796

SMILES-BERT (Wang et al., 2019), MolBERT (Li797

and Jiang, 2021) adapts the BERT architecture on798

SMILES string for molecular property prediction 799

tasks. To better focus on structural information 800

of molecules, various graph-based representation 801

learning models were presented. MolCLR (Wang 802

et al., 2022) specifically tailored contrastive learn- 803

ing for molecular graphs using data augmentation 804

while MAT (Maziarka et al., 2020) reinterpreted the 805

attention mechanism of transformers to consider 806

distance and edges. More recent works concentrate 807

on employing 3D geometry, mostly to exploit 3D 808

spatial coordinates. GraphMVP (Liu et al., 2021) 809

proposed a contrastive learning framework that 810

bridges 2D topological and 3D geometric views 811

of molecules. GEM (Fang et al., 2022) incorpo- 812

rated 3D geometric information by using bond an- 813

gles and lengths as additional edge attributes in 814

molecular graphs. Uni-Mol is a SE(3)-transformer 815

based model pretrained via 3D position recovery 816

and masked atom prediction. Additionally, Mol- 817

Former (Wu et al., 2023) integrates SMILES, graph, 818

and 3D conformer information in a unified trans- 819

former architecture for molecular property predic- 820

tion. These recent advancements demonstrate a 821

trend towards incorporating more diverse and rich 822

molecular information to improve the quality and 823

applicability of learned representations, validating 824

the approach of our research. 825

A.2 Datasets Statistics 826

PubChem. We gathered 324k SMILES-text pairs 827

from PubChem, generating 2D graphs and 3D con- 828

formations using existing methods (Maziarka et al., 829

2020; Landrum et al., 2013). Molecules with valid 830

structures were used, with 15k longer-text pairs for 831

training, and shorter ones for pretraining. 832

Table 4: PubChem324k dataset statistics

Subset #Molecule-Text Pairs #Min Words #Avg Words
Pretrain 290,507 1 17.84

Train 11,753 20 57.24
Valid 977 20 58.31
Test 1,955 20 55.21

For the molecule captioning task, we chose not 833

to use ChEBI-20 dataset (Degtyarenko et al., 2007) 834

due to two main considerations (Li et al., 2024). 835

First, ChEBI-20 is a curated subset of PubChem, 836

which introduces potential issues of data redun- 837

dancy and leakage given the overlap between the 838

two datasets. Second, ChEBI-20 replaces molecu- 839

lar names with generic terms like ‘the molecule’, 840

limiting the evaluation of the model’s ability to 841

11



associate structural features with accurate molec-842

ular names. Therefore, we utilized the PubChem843

dataset, which retains molecular names and offers844

a broader variety of structures, ensuring a more845

comprehensive evaluation of our framework in846

molecule captioning task.847

A.3 Experimental Settings848

Stage 1 Molecule-Text Retrieval Pretraining.849

Stage 1 serves to effectively transform molecular850

representations into query tokens interpretable in851

textual space. Using the PubChem324k pretrain-852

ing subset with shorter textual descriptions, that is853

less informative but easier to align, MQ-former is854

trained for 35 epochs. A total of 301,658 molecules855

generated valid 2D graphs and 3D conformers, and856

thereby was used for pretraining. The goal of857

this stage was to optimize MQ-Former’s univer-858

sal query generation by multi-objective training859

(molecule-text contrasting, molecule-text contrast-860

ing, and molecule captioning). Pretraining was861

conducted for 35 epochs using 3 NVIDIA A6000862

GPUs with a batch size of 99. Learnable query863

tokens of each view was set to 12 tokens and were864

randomly initialized. Both the Uni-Mol and MAT865

graph encoders were frozen throughout the pipeline866

to prevent the model from focusing too much on867

modifying the graph encoders, ensuring the train-868

ing prioritized aligning representations with the869

textual space. To put emphasis on the decoding870

ability given the molecule tokens, we assigned a871

weight of 2 to the captioning loss. Maximum text872

length was configured to 256. We used an opti-873

mizer with a warmup step of 200 and a learning874

rate scheduler with a decay rate of 0.9. Gradient875

accumulation was set to 1 batch per step.876

Stage 1 Molecule-Text Retrieval Finetuning.877

After 35 epochs of pretraining, we loaded the878

checkpoint and fine-tuned MQ-Former for an ad-879

ditional 10 epochs on PubChem’s train, valida-880

tion and test datasets, consisting of 12,000, 1,000,881

and 2,000 molecules respectively. Training is con-882

ducted using our modified multi-token contrastive883

loss. This serves to raise alignment capability given884

longer and more complex textual descriptions. The885

optimizer, learning rate scheduler, batch size and886

text length settings are identical to the previous887

phase.888

Stage 2 Molecule Captioning Pretraining.889

Stage 2 serves to further refine the universal890

tokens in a manner suited to a specific lan-891

guage model, LLaMA2 (Touvron et al., 2023)892

available at https://huggingface.co/baffo32/ 893

decapoda-research-llama-7B-hf. Using the 894

trained model checkpoint from Stage 1 training 895

stage, we conducted 4 epochs of pretraining on the 896

PubChem dataset. The universal query generated 897

by MQ-Former, along with the 1D SMILES string 898

and an instruction prompt were given as input to 899

the language model to generate textual descriptions 900

for the molecules. 901

To fine-tune LLaMA2 efficiently, we employed 902

LoRA (Hu et al., 2021) with a configuration of r=8, 903

α=32, and a 0.1 dropout rate. These settings were 904

applied to the [kproj , vproj , qproj , oproj , gateproj , 905

upproj , downproj] modules, adding 19 million 906

trainable parameters, which constituted 0.29% of 907

the total parameters in the LLaMA2-7B model. Un- 908

like Stage 1, we used batch size of 30 with a maxi- 909

mum text length of 320 considering the prompt size. 910

Token length for generation was set to range be- 911

tween 128 and 320. Gradient accumulation was set 912

to 2. The training was carried out using 3 NVIDIA 913

A6000 GPUs. 914

Stage 2 Molecule Captioning Fine-tuning. 915

Stage 2 pre-training checkpoint was further fine- 916

tuned on the train dataset for additional 10 epochs. 917

Experimental settings are same as stage 2 pre- 918

training phase, and validated using valid, test 919

datasets. 920

A.4 Effectiveness of MQ-Former 921

In this section, we provide the detailed explanations 922

and figures of Section 5.3. We illustrate the under- 923

lying mechanism for MQ-Former, which aligns 924

two representations by providing (1) generated cap- 925

tions with ground truth, (2) caption comparison 926

with Q-former based single-view alignment, and 927

(3) attention map visualization. 928

A.4.1 Comparison of MV-CLAM Captions 929

with Ground Truth 930

Appendix Table 5 provides caption examples 931

within the test dataset as specified in Section 5.2. 932

MV-CLAM not only correctly generates IUPAC 933

and generic names but also additional information 934

unavailable in ground truth labels. 935

A.4.2 Single-View Alignment Captions 936

Appendix Figure 5 highlights the differences in cap- 937

tioning results between the uni-modal Q-Former 938

ablation models and ours. This demonstrates that 939

the multi-view approach generates richer and more 940

precise molecular descriptions. 941
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Table 5: Comparison of ground truth and MV-CLAM descriptions. Matching keywords are highlighted in bold,
while additional details provided by MV-CLAM are marked in red.

Molecule Ground Truth MV-CLAM
Rifapentine is a rifamycin antibiotic that
is similar in structure and activity to ri-
fampin and rifabutin and that is used in
combination with other agents as therapy
of tuberculosis, particularly in once or
twice weekly regimens. Rifapentine is as-
sociated with transient and asymptomatic
elevations in serum aminotransferase and is
a likely cause of clinically apparent acute
liver injury.

Rifapentine is a rifamycin antibiotic that
is similar in structure and activity to ri-
fampin and rifabutin and that is used in
combination with other agents as therapy
of tuberculosis, particularly in once or
twice weekly regimens. Rifapentine is as-
sociated with transient and asymptomatic
elevations in serum aminotransferase and is
a likely cause of clinically apparent acute
liver injury. Rifapentine is a long-acting,
cyclopentyl-substituted derivative of ri-
famycin.

N-(2-hydroxytricosanoyl)-15-
methylhexadecasphing-4-enine-1-
phosphocholine is an N-acyl-15-
methylhexadecasphing-4-enine-1-
phosphocholine in which the acyl group
has 23 carbons and 0 double bonds
and is 2-hydroxylated. It is functionally
related to a 15-methylhexadecasphing-4-
enine.

N-(2-hydroxytricosanoyl)-15-
methylhexadecasphing-4-enine-1-
phosphocholine is an N-acyl-15-
methylhexadecasphing-4-enine-1-
phosphocholine in which the acyl group
has 23 carbons and 0 double bonds
and is 2-hydroxylated. It is functionally
related to a 15-methylhexadecasphing-4-
enine.

2D Only 3D Only Original Ground Truth

isatinic acid is a member of the class 

of 4-aminobenzoic acids that is 

anthranilic acid substituted by a 

hydroxy group at C-5. It has a role as a 

bacterial metabolite. It is a 

monohydroxybenzoic acid and a 

member of 4-aminobenzoic acids. It is 

functionally related to an anthranilic 

acid. It is a conjugate acid of an 

isatinate.

Anthraniloic acid is a metabolite found 

in or produced by Escherichia coli 

(stra

4-hydroxyphenyl sulfate(1-) is a 

phenyl sulfate oxoanion that is the 

conjugate base of 4-hydroxyphenyl 

hydrogen sulfate, obtained by 

deprotonation of the sulfate group; 

major species at pH 7. 3. It has a role 

as a human metabolite. It is a 

conjugate base of a 4-hydroxyphenyl 

hydrogen sulfate.

Phenyl hydrogen sulfate is a 

metabolite found in or produced by 

Escherichia col

(R)-3-hydroxytriacontanoyl-CoA is a 

3-hydroxy fatty acyl-CoA that results f

rom the formal condensation of the thi

ol group of coenzyme A with the carbo

xy group of (R)-3-hydroxytriacontanoi

c acid. It is a (R)-3-hydroxyacyl-CoA, 

a 3-hydroxy fatty acyl-CoA and an ultr

a-long-chain fatty acyl-CoA. It is a con

jugate acid

(R)-3-hydroxytriacontanoyl-CoA is a 

3-hydroxy fatty acyl-CoA that results 

from the formal condensation of the 

thiol group of coenzyme A with the 

carboxy group of (R)-3-

hydroxytriacontanoic acid [(R)-3-

hydroxymelissic acid]. It is a (R)-3-

hydroxyacyl-CoA, a 3-hydroxy fatty 

acyl-CoA and an ultra-long-chain fatty 

acyl-CoA. It is functionally related to a 

triacontanoic acid. It is a conjugate 

acid of a (R)-3-hydroxytriacontanoyl-

CoA(4-)

2D only 3D only Original Ground Truth

Figure 5: Comparison of Uni-modal Q-Former Ablation and Ours

13



A

B

Attention Map for 2D Query – Text Alignment

Attention Map for 3D Query – Text Alignment

Attention Map for 3D Query – Text Alignment

Attention Map for 2D Query – Text Alignment

Figure 6: Comparison of attention map visualizations using different contrasting losses. The x-axis represents the
word tokens in the sentence: [DEC] bis ( 2 - ( dimethylamino ) ethyl ) ether appears as a clear or yellow liquid . bp :
188 °c . toxic by inhalation , by skin absorption , ingestion , and eye contact . [SEP]., while the y-axis corresponds
to the query tokens representing the molecule. (A) shows each query exhibiting different attention weights across
the textual descriptions. Additionally, 2D query tokens focus on chemical and material properties (e.g., boiling
point, toxic, eye contact), while 3D query tokens capture structural information (e.g., bis(2-(dimethylamino)ethyl)).
Comparatively in (B), all query tokens have consistent attention distributions for all text tokens and lack word
specificity for each dimension.
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A.4.3 Attention Map Visualization942

We provide images of the attention maps explained943

in Section 5.3 (Appendix Figure 6). The attention944

maps of the shared self-attention layers are visual-945

ized to compare the processing of 2D and 3D query946

tokens with and without the multi-token contrasting947

loss. With the proposed loss, query tokens exhibit948

diverse attention scores for each word in the cap-949

tioning sentences while effectively distinguishing950

2D- and 3D-related terms. Specifically, 2D query951

tokens focus on chemical and material properties952

(e.g., boiling point, toxic, eye contact), while 3D953

query tokens capture structural information (e.g.,954

bis(2-(dimethylamino)ethyl)). In contrast, the origi-955

nal contrastive loss reduces query token diversity956

and weakens MQ-Former’s ability to align with 2D-957

and 3D-specific terms. This demonstrates that MQ-958

Former with the revised contrastive loss not only959

effectively preserves modality-specific information960

from 2D and 3D while aligning seamlessly with961

textual semantics but also guarantees query token962

diversity.963

A.5 Downstream Task 1. Question Answering964

A.5.1 Dataset: 3D-MolT965

A total of 18439K molecule-instruction text pairs966

are employed using the dataset split as given in the967

original paper (Li et al., 2024). The dataset con-968

sists of two types of molecular property prediction969

tasks: (1) Computed property prediction includ-970

ing 3D-dependent properties (e.g. HOMO) and (2)971

descriptive property prediction.972

Table 6: Statistics of the PubChemQC and PubChem
datasets across different subsets.

Subset PubChemQC PubChem
#Mol #Comp. QA #Mol #Comp. QA #Desc. QA

Pretrain 3,119,717 12,478,868 301,658 1,199,066 1,508,290
Train 623,944 2,495,776 12,000 46,680 60,000
Valid 77,993 311,972 1,000 3,898 5,000
Test 77,993 311,972 2,000 7,785 10,000

A.5.2 Experimental Settings973

For the molecular question-answering task, we uti-974

lized the 3D-MolT (Li et al., 2024) dataset, which975

includes question-prompt and text-answer pairs de-976

rived from the same PubChem data we used in977

prior. Dataset statistics are in Appendix Table 6978

The dataset consists of three distinct subsets: (1)979

Question-answering about non-3D properties, (2)980

Question-answering about 3D properties, and (3)981

Descriptive molecular properties.982

For robust guidance into instruction tuning, the 983

three sub-datasets of 3D-MolT (Li et al., 2024) 984

were used in combination for training a single 985

epoch. To ensure a fair comparison with single- 986

view methods, we initialized the instruction-tuning 987

process using the pretrained MV-CLAM check- 988

points from the molecule captioning stage, employ- 989

ing the original loss function rather than the multi- 990

token contrasting loss. Given the dataset size, the 991

model was further fine-tuned for 5 epochs on non- 992

3D, descriptive property tasks and 1 epoch on 3D 993

property tasks. For computed property prediction, 994

we evaluated performance using mean absolute er- 995

ror (MAE). For descriptive property prediction, we 996

measured BLEU, ROUGE, and METEOR scores. 997

A.5.3 Results 998

For baselines, we reproduced results for 3D-MoLM 999

and 2D-MoLM (with MAT (Maziarka et al., 2020) 1000

graph encoder). These baselines represent single- 1001

modal alignment using Q-Former, and provides 1002

a fair point of comparison to demonstrate the ef- 1003

ficacy of our multi-view cross-modal alignment. 1004

Appendix Tables 7, 8 and 9 show that MV-CLAM 1005

consistently outperformed the single-modal mod- 1006

els. 1007

Table 7: Comparison of Descriptive Property Genera-
tion Performance

Model B-2 B-4 R-1 R-2 R-L M
2D-MoLM 31.24 25.13 39.30 25.16 34.11 49.88
3D-MoLM 29.22 22.82 37.38 22.54 31.47 27.29

MV-CLAM‡ 31.70 25.60 39.61 25.46 34.51 50.61

Table 8: Q&A performance on 3D properties

Model HOMO LUMO HOMO-LUMO SCF Energy
2D-MoLM 0.78 (0.99) 0.47 (0.99) 0.39 (0.90) 0.98 (1.00)
3D-MoLM 0.42 (0.99) 0.44 (0.98) 1.26 (0.99) 1.22 (0.98)

MV-CLAM‡ 0.35 (0.98) 0.42 (0.93) 0.35 (0.99) 0.32 (0.99)

Table 9: Q&A performance on non-3D properties. MW,
TPSA denotes molecular weight and topological surface
area.

Model MW LogP Complexity TPSA
2D-MoLM 47.51 (0.98) 0.89 (0.99) 110.78 (0.99) 16.65 (0.99)
3D-MoLM 42.76 (0.96) 1.25 (0.96) 105.03 (0.96) 20.97 (0.92)

MV-CLAM‡ 21.35 (0.92) 0.69 (0.94) 55.14 (0.91) 9.65 (0.91)

A.6 Downstream Task 2: Zero-shot Molecule 1008

Editing 1009

Unlike conventional natural languages, SMILES 1010

encode molecular topology and properties demand- 1011

ing a specialized understanding of its notation 1012

system. Thereby, previous efforts in text-based 1013
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Original molecule

LogP: 2.75

The molecule is 

soluble in water.

Editing Prompt

LogP: 2.37 LogP: 4.58 (↑)

The molecule is 

insoluble in water.

Editing Prompt

LogP: 2.07 (↓)

Edited molecule

Figure 7: Zero-shot editing with chemical properties

de-novo molecule generation with large language1014

models typically involves training or developing1015

tokenizers that account for the unique grammar1016

of SMILES (Edwards et al., 2022). By fine-1017

tuning MV-CLAM, we enabled the model to output1018

SMILES strings without additional tokenizer train-1019

ing.1020

A.6.1 Dataset: ZINC201021

Following the experiment settings of (Liu et al.,1022

2023a), 200 molecules randomly selected from1023

the ZINC20 dataset are given 6 single-objective1024

molecule editing instructions. The 200 molecules1025

follow the property distribution of the entire dataset,1026

and do not overlap with the PubChem324k training1027

dataset in previous stages. The six instructions are1028

the following. (1) The molecule is soluble in water.1029

(2) The molecule is insoluble in water. (3) The1030

molecule has high permeability. (4) The molecule1031

has low permeability. (5) The molecule is like a1032

drug. (6) The molecule is not like a drug. (7) The1033

molecule has more hydrogen bond donors. (8) The1034

molecule has more hydrogen bond acceptors.1035

A.6.2 Experimental Settings1036

Zero-shot molecule editing was conducted on the1037

curated dataset presented in (Liu et al., 2023a)1038

which consists of 200 randomly sampled molecules1039

from the ZINC dataset. Each molecule was paired1040

with molecule editing prompts (chemical instruc-1041

tions such as "The molecule is more soluble in wa-1042

ter") and their corresponding SMILES. The dataset1043

included molecular structures that were unseen dur-1044

ing training. Starting with the original SMILES,1045

the universal molecular token generated by the1046

trained MQ-Former, and the editing prompt, we 1047

generated SMILES of the edited molecule. Us- 1048

ing the pretrained MV-CLAM checkpoints from 1049

the molecule captioning stage, we conducted zero- 1050

shot molecule editing, utilizing the model’s pre- 1051

existing multi-view molecular understanding from 1052

prior stages. The model was further fine-tuned for 1053

4 epochs on the PubChem 324k pretraining and 1054

training datasets. This fine-tuning enabled MV- 1055

CLAM to directly generate SMILES from molec- 1056

ular universal tokens and was crucial to produce 1057

valid SMILES, considering the nature of LLaMA’s 1058

general-purpose tokenizer which was not explic- 1059

itly trained for SMILES generation. We evaluate 1060

the edited results by computing desired chemical 1061

properties using RDKit (Landrum et al., 2013), and 1062

classify whether the modification was valid shot. 1063

A.6.3 Results 1064

In this section we show successful case studies 1065

of the language model generating valid SMILES 1066

strings with adequate property modifications. Com- 1067

pared to previous works which mostly generate 1068

mere modifications of a single functional group, 1069

MV-CLAM generates diversified chemical struc- 1070

ture modifications that may not be immediately ob- 1071

vious. This ability to generate more complex mod- 1072

ifications is particularly advantageous for domain 1073

experts, as simple functional group changes are 1074

typically easy to perform manually. We attribute 1075

this diversity to the model’s robust understanding 1076

of molecules within the textual space. The align- 1077

ment between molecules and text is achieved by 1078

focusing on distinct substructures and molecular 1079

properties through the multi-view approach. 1080
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(Appendix Figure 7, 8,9,10,11). The values1081

presented indicate the predicted LogP (octanol-1082

water partition coefficient), topological surface1083

area (TPSA), quantitative estimate of drug-likeness1084

(QED) and number of hydrogen bond and accep-1085

tors. Each figure showcases original molecules1086

alongside their modified counterparts with numer-1087

ical indicators representing the chemical proper-1088

ties before and after the zero-shot editing. LogP1089

values reflect solubility in water, while topologi-1090

cal surface area relates to molecular permeability.1091

QED reflects drug likeliness. The modifications1092

are aligned with targeted property-based editing1093

prompt, demonstrating the flexibility and chemical1094

expertise of MV-CLAM.1095

A.7 Ablation Studies for Stage 2. Specializing1096

LLaMA2 for Molecule Captioning1097

1D Molecular Representations We conducted1098

an ablation study to compare the use of SELFIES1099

(Krenn et al., 2020) with SMILES as input represen-1100

tations (Appendix Table 10). Using the pretrained1101

Stage 2 checkpoint, the model was further trained1102

for captioning under identical settings. After 101103

stages of training with SELFIES, SMILES consis-1104

tently demonstrated superior performance across1105

metrics such as BLEU, METEOR, and ROUGE,1106

validating the effectiveness of our selection.1107

Table 10: Captioning performance comparison for 1D
molecular representations

Model B-2 B-4 R-1 R-2 R-L M
SELFIES 28.39 20.89 33.25 37.58 22.49 31.37
SMILES 31.75 24.48 40.43 25.72 33.79 36.54

A.8 Failure Case Study1108

Appendix Table 11 showcases two instances where1109

MV-CLAM fails to differentiate structurally similar1110

molecules. First, the model misclassifies lactoyl-1111

CoA as oleoyl-CoA despite the key difference be-1112

ing the length of the carbon chain. This indicates1113

a limitation in the model’s capacity to capture sub-1114

tle variations in carbon chain lengths. Second, the1115

model misidentifies Ajugaciliatin B as subtypes1116

E and C, demonstrating that while it successfully1117

recognizes the molecule’s primary backbone, it1118

struggles to distinguish the small functional groups1119

that define each subtype. This suggests that the1120

model is not sufficiently sensitive to minor struc-1121

tural modifications. Both errors appear to stem1122

from the model’s difficulty in perceiving refine dif-1123

ferences in chemical properties and spatial struc- 1124

ture between the ground truth and its predictions. 1125

This underscores a broader challenge in molecular 1126

captioning: capturing subtle yet critical molecular 1127

features that may not greatly impact the primary 1128

structure but are crucial contributors for property. 1129

To overcome these limitations, we propose sev- 1130

eral future studies. First, expanding our MQ- 1131

Former to align additional views or modalities, 1132

along with finer-grained molecular or related bi- 1133

ological embeddings, could offer complementary 1134

insights to enhance the model’s ability to differen- 1135

tiate between similar molecules. This multi-view 1136

alignment could offer a more holistic understand- 1137

ing of the molecule’s structure and properties. In 1138

addition, curating larger molecule datasets would 1139

enhance the model’s capacity to generalize, ensur- 1140

ing it has sufficient exposure to a wide range of 1141

molecular variations during training. These devel- 1142

opments will address the current shortcomings and 1143

pave the way for more accurate molecular identifi- 1144

cation in future iterations of the model. 1145

17



Case Study: Zero-shot Molecule Editing

• Output SMILES notation for given molecule & chemical property-based 
instruction (Solubility, Hydrogen bond donor/acceptors, Permeability, Drug-likeliness) 

SNU BHI1

The molecule is soluble in water. The molecule is insoluble in water.
 (LogP)

Original (4.53) Modified (1.59) Original (3.43) Modified (4.84)

• Previous works mostly generate mere modifications in terms of functional groups. 

• WITHOUT additional tokenizer training, succeed in generating valid chemical SMILES notation, while 

diversifying chemical structure modifications that meet the given chemical instructions.

Figure 8: Editing Solubility (LogP Adjustments): Smaller LogP indicates higher solubility in water. Molecules
were successfully modified given the prompt "The molecule is soluble/insoluble in water".

SNU BHI1

The molecule has high permeabiliy. The molecule has low permeability.
 (Topological Surface Area)

Original (71.34) Modified (84.48) Original (67.43) Modified (58.20)

Original (64.80) Modified (79.81) Original (89.35) Modified (64.21)

Figure 9: Editing Permeability (Topological Surface Area, TPSA Adjustments): A higher TPSA implies lower
permeability, while a lower TPSA suggests higher permeability. Molecules were successfully modified given the
prompt "The molecule has high/low permeability".

SNU BHI1

The molecule is like a drug. The molecule is not like a drug.
 (QED)

Original (0.73) Modified (0.86) Original (0.84) Modified (0.69)

Original (0.77) Modified (0.88) Original (0.84) Modified (0.70)

Figure 10: Editing Drug Likeliness (Quantitative Estimate of Drug-likeness, QED): A higher QED suggests a
compound is more likely to possess favorable pharmacokinetic and ADMET (absorption, distribution, metabolism,
excretion, and toxicity) properties, being more drug-likely. Molecules were successfully modified given the prompt
"The molecule is/is not like a drug".
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SNU BHI1

The molecule has more hydrogen bond donors. The molecule has more hydrogen bond acceptors.
 (number of donors/acceptor)

Original (2) Modified (4) Original (3) Modified (4)

Original (2) Modified (4) Original (6) Modified (7)

Figure 11: Editing Hydrogen Bond Acceptor/Donors: The number of hydrogen bond acceptors and donors in the
molecule were given for evaluation. Molecules were successfully modified given the prompt "The molecule has
more hydrogen bond donors/acceptors".

Table 11: Failure Case Study: Comparison of Ground Truth and MV-CLAM Descriptions

Molecule Ground Truth MV-CLAM

Lactoyl-CoA(4-) is an acyl-CoA(4-) that is
the tetraanion of lactoyl-CoA arising from
deprotonation of phosphate and diphos-
phate functions. It is a conjugate base of a
lactoyl-CoA.

oleoyl-CoA(4-) is an acyl-CoA(4-) that is
the tetraanion of oleoyl-CoA, arising from
deprotonation of phosphate and diphos-
phate functions. It has a role as a human
metabolite and a Saccharomyces cerevisiae
metabolite. It is a saturated fatty acyl-
CoA(4-) and a 3-substituted propionyl-
CoA(4-). It is a conjugate base of an oleoyl-
CoA

Ajugaciliatin B is a diterpene lactone iso-
lated from the whole plants of Ajuga cili-
ata and has been shown to exhibit neuro-
protective activity. It has a role as a plant
metabolite and a neuroprotective agent. It
is a diterpene lactone, an acetate ester, a
butenolide, a carbobicyclic compound, an
organochlorine compound and a tertiary al-
cohol. Ajugaciliatin B is a natural product
found in Ajuga ciliata with data available.

ajugaciliatin C is a natural product found
in Ajuga ciliata with data available. Aju-
gaciliatin E is a diterpene lactone isolated
from the whole plants of Ajuga ciliata. It
has a role as a plant metabolite. It is a
butenolide, an acetate ester, a diterpene lac-
tone and a organochlorine compound. It is
functionally related to a tiglic acid. Aju-
gaciliatin E is a natural product found in
Ajuga ciliata
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